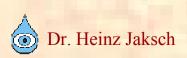


Biologisches Labor Wien-Ost

Dr. Heinz Jaksch Labor: 1060 Wien Corneliusg. 11 0664 / 53 45 835 labor@tuempeldoktor.at http://www.tuempeldoktor.at

Aufgabengebiete


- -) seit 1985 wissenschaftliche Arbeiten, Forschungen, Routineanalysen und Gutachten an Kleingewässern (v.a. Garten- und Schwimmteiche, Schotterteiche)
 - -) ab 2009 Geschäftsführer des Allgemeinen Schwimmteich Clubs (ASC) Österreich

- -) Gutachten und Analysen für Schwimmteichbesitzer und Schwimmteichbauer, Bau- und Betriebsberatung, Problemmanagement, Schulungen
- -) Zertifizierungen, Qualitätssicherung, Fortbildungen in Zusammenarbeit mit dem Verband Österreichischer Schwimmteichbauer (VÖS)

- -) Durchführung von Forschungsarbeiten zur Funktionsweise verschiedensten Teichzubehörs (z.B. Kläranlagen, Dünger, Algenmittel, Wasseraufbereitung)
 - -) Wissenschaftsjournalismus (Austria Presse Agentur APA, Sachbuch, Naturfotografie)

"Fadenalgenanalysen zur Abschätzung des Nährstoffstatus in oligo- bis leicht eutrophen Schwimmteichen"

- Wozu?
- Typische Fadenalgenteiche zeigen bei chemischen Wasseranalysen häufig extrem niedrige Nährstoffwerte
- Totalphosphor oft unter 10 μg/l, auch Werte unter 4 μg/l möglich
- Widerspruch: Bei diesen Werten sollten keine Algen (<10 μg/l) und unter 4 μg/l nicht einmal mehr Biofilm wachsen
- Erklärung: Speziell in Schwimmteichen (Weihercharakter)
 ist ein Bewuchs mit Fadenalgen im Vergleich mit der
 Wassermenge erheblich Nährstoffe sind in den Fäden
 gebunden

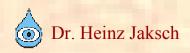


Foto: Dr. Andreas Fuchs

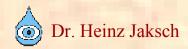
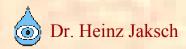
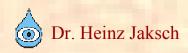



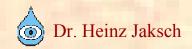
Foto: Dr. Andreas Fuchs



Beispiel: Polnischer Stausee: Spitzenwert 280 g/m² TG Fadenalgen Häufig gefunden wurden Werte bis 100 g/m² (aus: Dondajewska & Budzynska, 2009)

einen Unterbefund

Nachdem jede Algenart – wie auch jede andere Pflanze – einen spezifischen Lebensraum bevorzugt, erlauben Fadenalgenanalysen relativ rasche Abschätzungen des Nährstoffgehalts eines Schwimmteichs

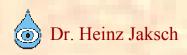

Die folgenden Ausführungen sind das (vorläufige) Ergebnis von hunderten Einzeluntersuchungen und Laborversuchen

Dominierende Algentypen in durchschnittlichen Schwimmteichen

Schwebealgen, Wassertrübung fädige Algen dünne Beläge, Krusten Wüste (i) 10 20 30 40 50 100 $P_{\text{tot}} \big[\mu g/l \big]$

Ist ein Schwimmteich in einem bestimmten Zustand (z. B. Trübe), so hält sich dieser hartnäckig; Übergänge passieren meist nicht kontinuierlich, sondern sprunghaft.

Beispiel: Übergang von Fadenalgen zu Trübe oder umgekehrt


Mischformen sind selten (Ausnahme: unterschiedliche Strömungsverhältinisse)

Ein Fadenalgenteich ist meist glasklar Ein trüber Teich hat kaum Fadenalgen

In Fadenalgenteichen sind meist eine oder zwei Gruppen dominierend (deckt sich mit wissenschaftlichen Untersuchungen, z. B. Khanum, 1982)

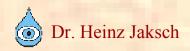
Konkurrenz um Licht und Nährstoffe reichen als Erklärung für diese Beobachtungen kaum aus

Bisher kaum beachtet: Allelopathie (chemische Kriegsführung der Pflanzen)

Group/species	Origin	Active component	Target	Action	References
Lyngbya sp.*	FW periphyton, USA	Pahayokolide A (cyclic peptide)	Cyanobacterium, chlorophytes	Inhibition of growth and homogonia development	Berry & al. 2004
Os cil latoria agardhi i (Planktothr ix agardhi i) *	PW plankton, USA	Cell-free fil trate	Diatoms	Growth inhibition	Keating 1978, 1987
		Living cells	Cryptophyte	Growth inhibition	Infante & Abella 1985
O. angus tissima	Edaphie, Egypt	Antibiotic, extracted with ethyl acetate	Cyanobacteria, chlorophytes	Inhibition of growth and O ₂ evolution	Issa 1999
O. elegans	FW plankton, USA	Cell-free fil trate	Diatoms	Growth inhibition	Keating 1978
O. lasteviras	FW plankton, India	Extracellular C ₂₅ alkane with a phenol group and an α, β- unsaturated carbonyl residue	Cyanobacteria, chlorophytes	Growth inhibition, cell lysis, inactivation of photosynthetic PSII- mediated reactions and O ₂ evolution, damage of thylakoid membranes, loss of chl, proteins and toxicity	Bagchi & al. 1990, 1993, Chauha & al. 1992, Bagchi 1995, Marwal & al. 1995, Ray & Bagchi 2001
O. rubescens	FW plankton, USA	Cell-free fil trate	Cyanobacteria, diatoms, chlorophytes	Growth inhibition	Kenting 1977, 1978, 1987
O. sancta*	cc	Culture medium	Cyanobacteria	Growth inhibition	Volk 2005
On cil latoria s.p.*	FW plankton, USA	Cell-free fil trate	Cyanobacteria, diatoms, chlorophytes	Growth inhibition	Keating 1977, 1987
	Riverine, epilithic, Spain	Methanol extracts, microcystins	Cyanobacteria	Growth inhibition, morphological and ultrastructural alterations	Valdor & Aboal 2007
Phormi dium foveolarum	cc	Culture medium	Cyanobacteria	Growth inhibition	Volk 2005
P. tanue (Leptolyngbya tanu is)*	FW plankton, Japan	Polyunsaturated fatty acids	Itself	Cell lysis	Murakami & al. 1990, 1991, Yamada & al. 1993
Phorné dium sp. *	Riverine, epipelic, Spain	Methanol extracts, microcystins	Cyanobacteria	Growth inhibition, morphological and ultrastructural alterations	Valdor & Aboal 2007
Pseudanabaena galeata	FW plankton, USA	Cell-free fil trate	Cyanobacteria, diatoms, chlorophytes	Growth inhibition	Kenting 1978, 1987
ostocales					
Anabama cyl indrica*	cc	Culture medium	Cyanobacteria	Growth inhibition	Volk 2005
A. flos-aquae*	cc	Siderophores produced under Fe- limitation	Chlorophytes	Growth inhibition, by Fe deprivation or direct toxicity	Murphy & al. 1976, Matz & al. 2004
	cc	Culture medium, mi crocystin-LR, anatoxin-a (alkaloid)	Chlorophyte	Growth inhibition, paralysis, increased settling rate	Kearns & Hunter 2000, 2001
A. holsaticum	FW plankton, USA	Cell-free fil trate	Cyanobacteria, diatoms	Growth inhibition	Kenting 1977, 1978
A. tranqual ts*	cc	Culture medium	Cyanobacteria	Growth inhibition	Volk 2005
A. d. lanmamannii *	BW plankton, Sweden	Cell-free filtrate	Cryptophyte, diatom	Growth inhibition	1, 111

Growth inhibition

Growth inhibition


Cyanobacterium

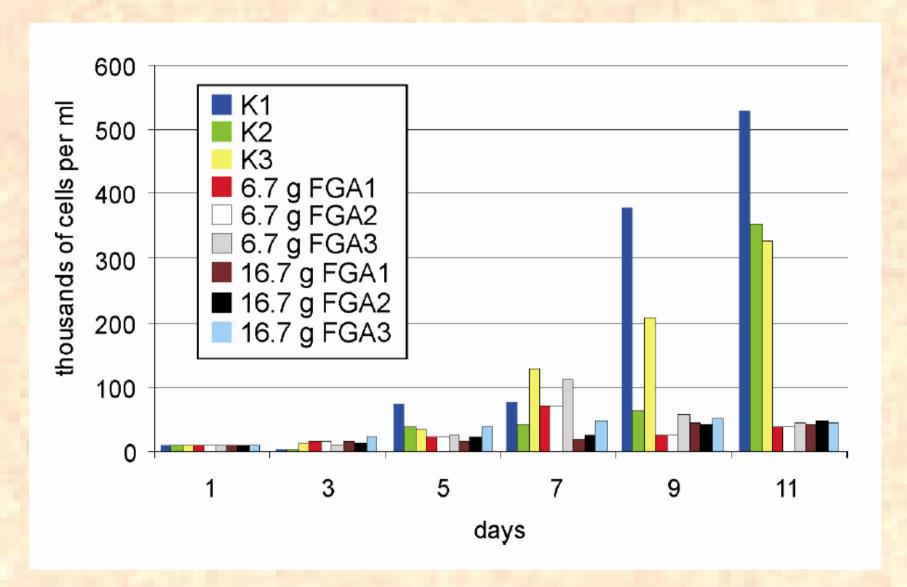
Cyanobacteria, diatom, chlorophytes

aus: Suikkanen, 2008

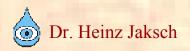
Kaya & al. 2002

Schagerl & al. 2002

A. spiroides*


A. torulosa*

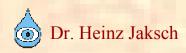
FW plankton, Thailand


FW plankton, Austria Living cells

finnish institute of Marine Research - Contributions No. 15

Cladophora vs. Desmodesmus (Dondajewska & Budzynska, 2009)

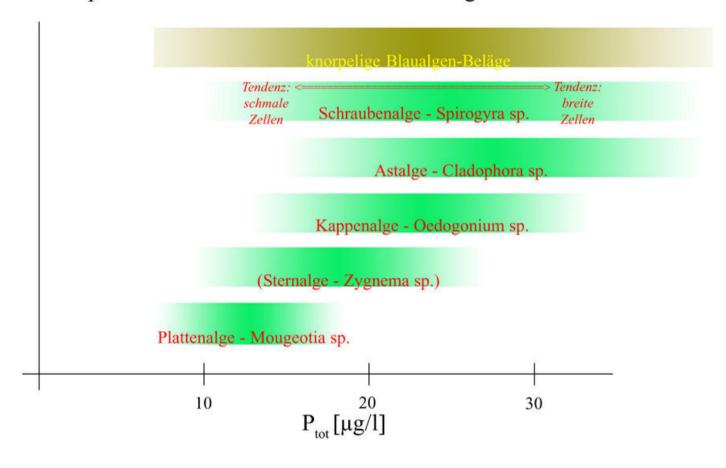
In der chemischen Kriegsführung der Pflanzen gilt "Jeder gegen Jeden" Oft richten sich die Substanzen aber auch gegen ganze, konkurrierende Typen.

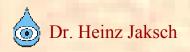

z. B. Ceratophyllum vs. Phytoplankton
Cladophora vs. Phytoplankton
Microcystin aus Blaualgen vs. Ceratophyllum, Myriophyllum

Behauptung:

Allelopathie könnte letztendlich dafür verantwortlich sein, dass es eine Menge – vor allem naturnaher – Schwimmteiche gibt, die aus heutiger Sicht völlig falsch gebaut sind und dennoch klaglos funktionieren

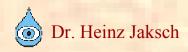
Nebenbemerkung:


In pflanzenarmen Teichen Kat. 4 und 5 ist diese *Chance* weitgehend verspielt (Kampfstoffe im Wasser brauchen Mindestkonzentration)



Dominierende Fadenalgen in durchschnittlichen Schwimmteichen

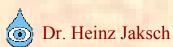
Phosphor-Gehalte und dominierende Fadenalgen in Schwimmteichen



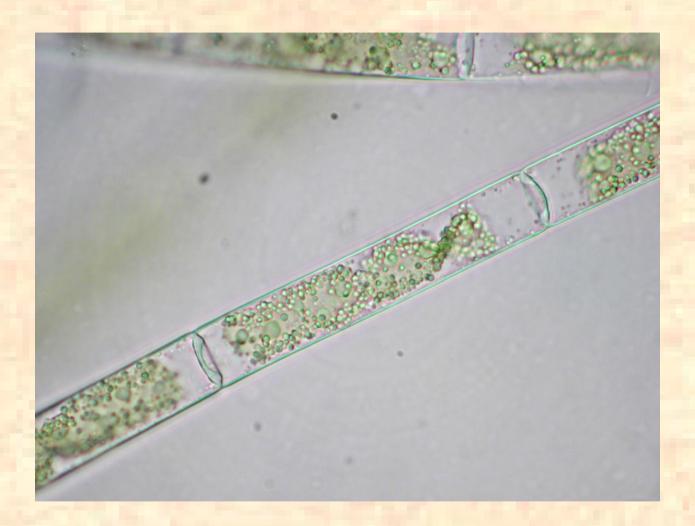
Die häufigsten Bestand bildenden Fadenalgen in durchschnittlichen Schwimmteichen:

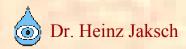
- Jochalgen:
 - Plattenalge Mougeotia sp.
 - Kniealge (Knie-Jochalge) Gonatozygon sp.
 - Schraubenalge Spirogyra sp.
 - Sternalge Zygnema sp.
- Grünalgen i. e. S.:
 - Kappenalge Oedogonium sp.
 - Astalge Cladophora sp.

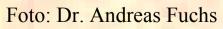
Plattenalge - Mougeotia sp.

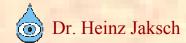

>> Hellgrüne Fäden, schleimig, <u>leicht zerfallend</u>

>> Keine Verästelungen


>> Mikroskop: kaum verwechselbarer plattenförmiger Chloroplast

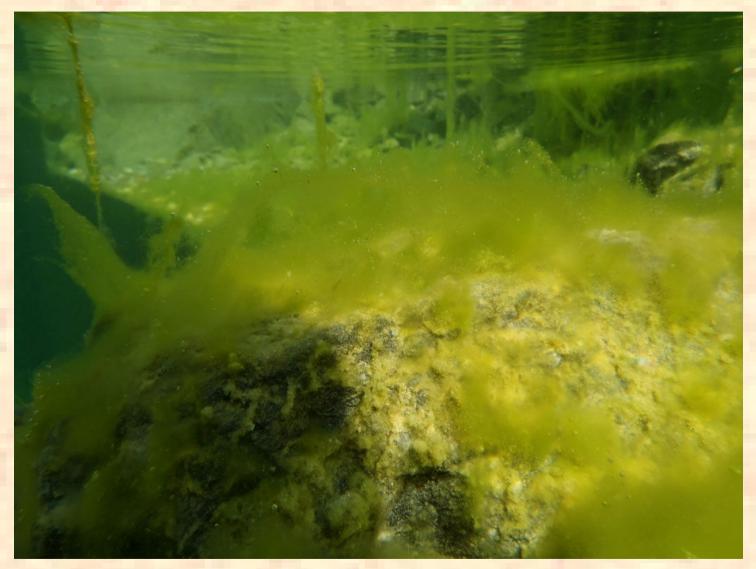
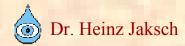

- Zeigt Wasser mit geringem Nährstoffgehalt an
- Vorkommen dominierend, aber auch mit Zygnema oder anderen Fadenalgen gemeinsam
- Hoher Lichtbedarf, verschwindet bei anhaltendem Schlechtwetter, verträgt keine Strömung

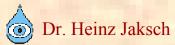

Mougeotia sp.

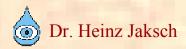


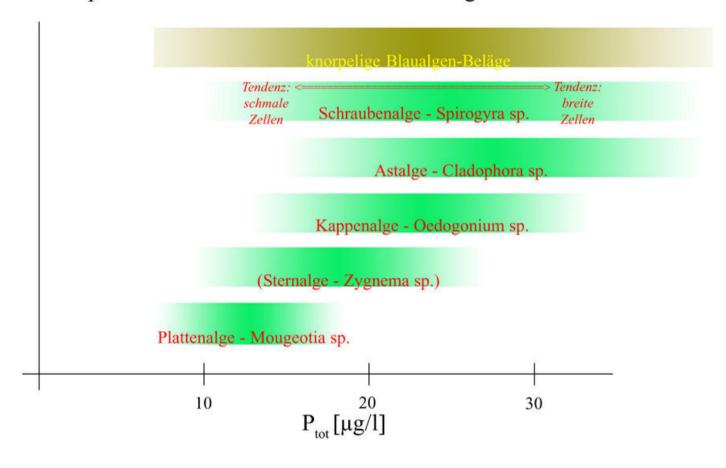
Mougeotia

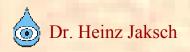
Mougeotia


Foto: Dr. Andreas Fuchs



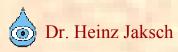




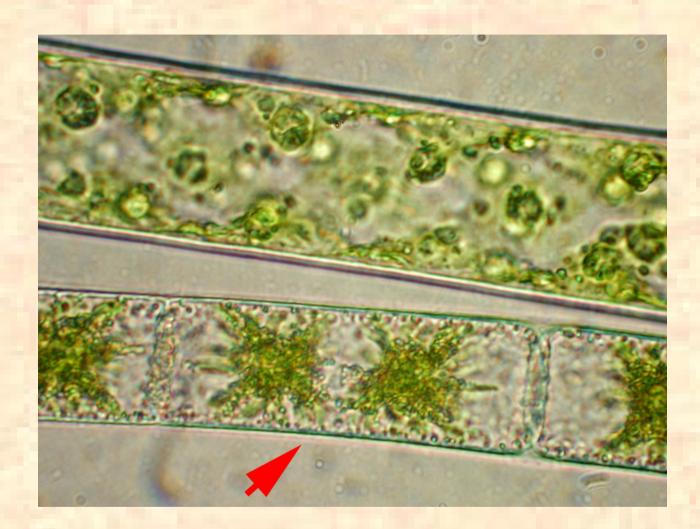
Dominierende Fadenalgen in durchschnittlichen Schwimmteichen

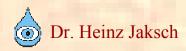
Phosphor-Gehalte und dominierende Fadenalgen in Schwimmteichen

Sternalge - Zygnema sp.

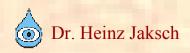

>> Hellgrüne, relativ feste Fäden

>> Keine Verästelungen


>> Mikroskop: kaum verwechselbare sternförmige Chloroplasten

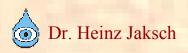

- Zeigt Wasser mit geringem/mäßigem Nährstoffgehalt an
- Vorkommen selten dominierend, häufig gemeinsam mit Mougeotia oder Spirogyra
- Hoher/mittlerer Lichtbedarf

Zygnema sp.

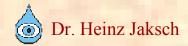


Schrauabenalge - Spirogyra sp.

- >> Mittel- bis dunkelgrüne Fäden, <u>schleimig, sehr</u> <u>stabil</u>
 - >> Keine Verästelungen
- >> Mikroskop: kaum verwechselbarer spiralförmiger Chloroplast

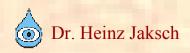

- Zeigt Wasser mit mittlerem/geringem Nährstoffgehalt an
- Vorkommen dominierend, aber auch mit Cladophora oder anderen Jochalgen gemeinsam
- Mittlerer Lichtbedarf, empfindlich gegen niedrige Temperaturen

Fädige Jochalgen – Spirogyra sp.



Spirogyra: mittel- bis dunkelgrün, schleimig, stabil

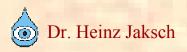
Foto: Dr. Andreas Fuchs

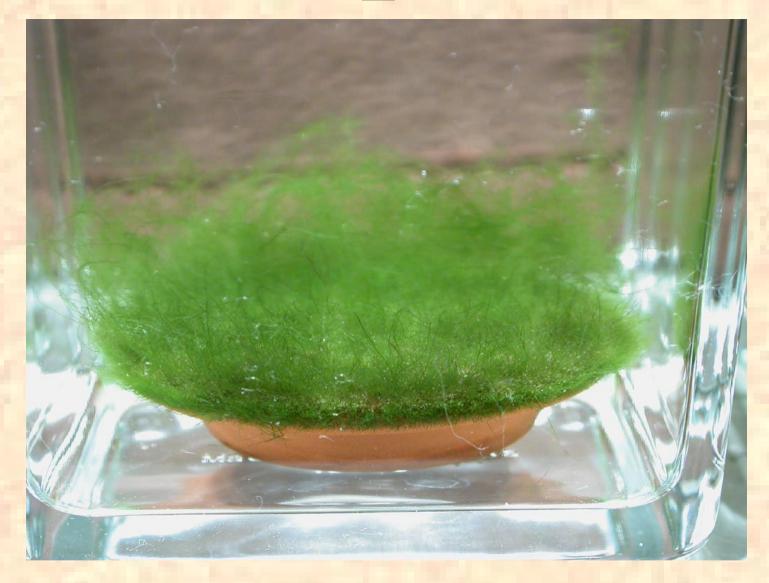

Kappenalge - Oedogonium sp.

>> Meist dunkle, derbe Fäden, deutlicher Widerstand beim Abrupfen von Steinen oder Folie

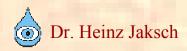
> >> Keine Verästelungen, kurzflorig (wenige Zentimeter)

- Zeigt Wasser mit mittlerem Nährstoffgehalt an
- Vergleichsweise geringer Lichtbedarf
- Cladophora/Oedogonium-Vorkommen kann mehrfach im Jahr mit trübenden Schwebealgen wechseln

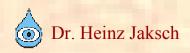




Fädige Grünalgen – Oedogonium sp.



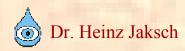
Anwachsende Fadenalgen Kappenalge - Oedogonium


Astalge - Cladophora sp.

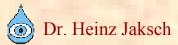
>> Meist dunkle, derbe Fäden, deutlicher Widerstand beim Abrupfen von Steinen oder Folie, kann riesige Watten/Bärte produzieren, nicht schleimig

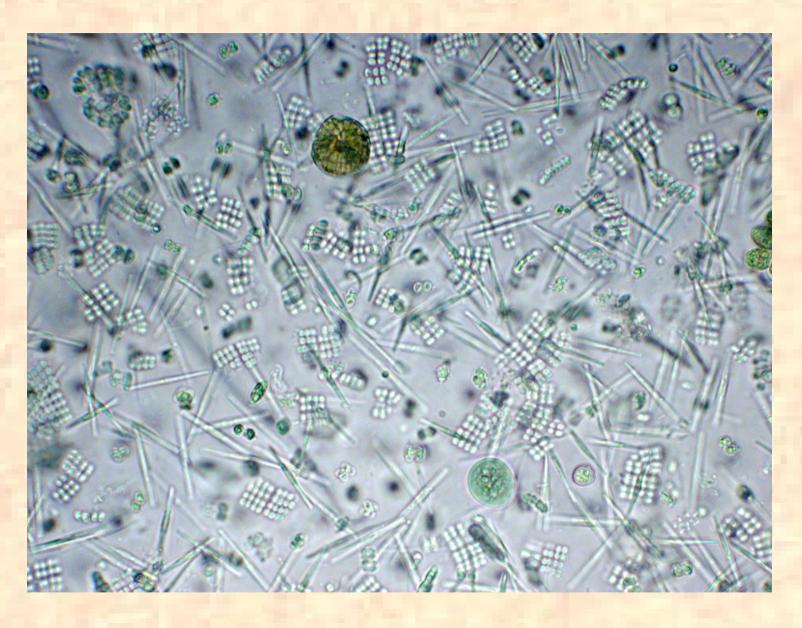
> >> Mit freiem Auge sind Verästelungen zu erkennen

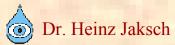
- Zeigt Wasser mit mittlerem Nährstoffgehalt an
- Vergleichsweise geringer Lichtbedarf
- Cladophora/Oedogonium-Vorkommen kann mehrfach im Jahr mit trübenden Schwebealgen wechseln

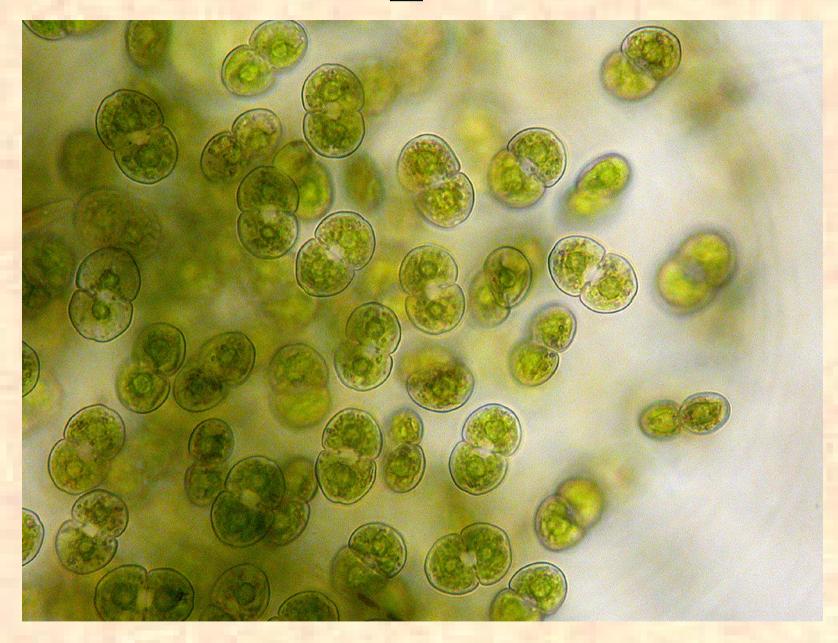


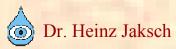
Cladophora: mittel- bis hellgrün, nicht schleimig, fest

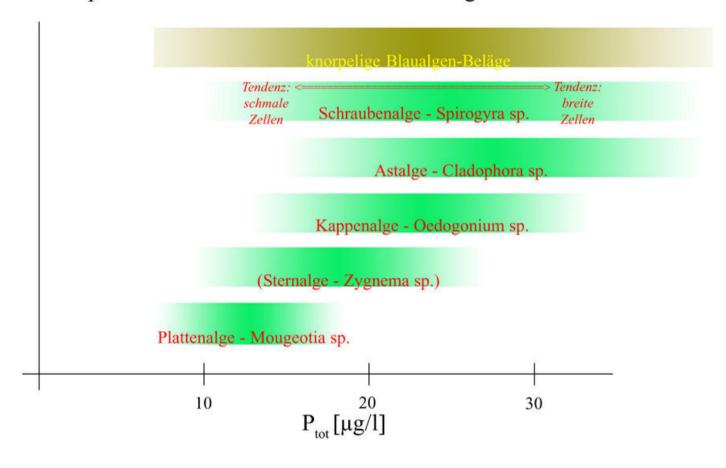

Foto: Dr. Andreas Fuchs

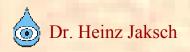


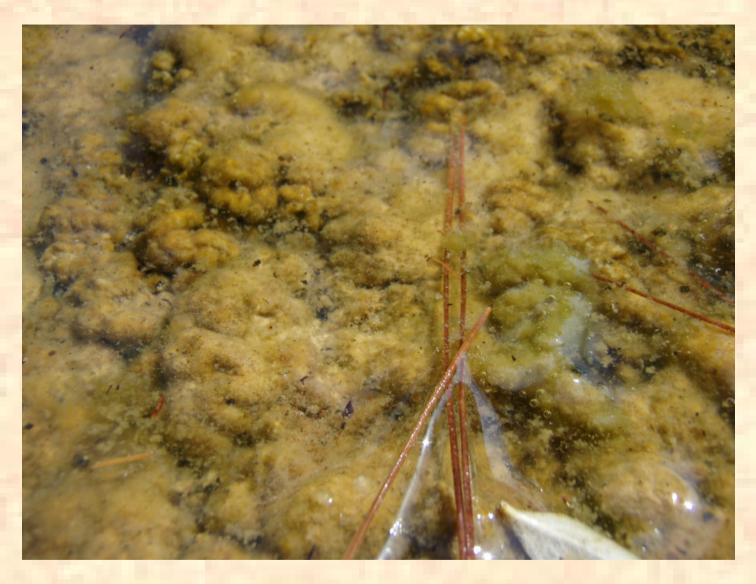




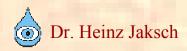


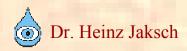


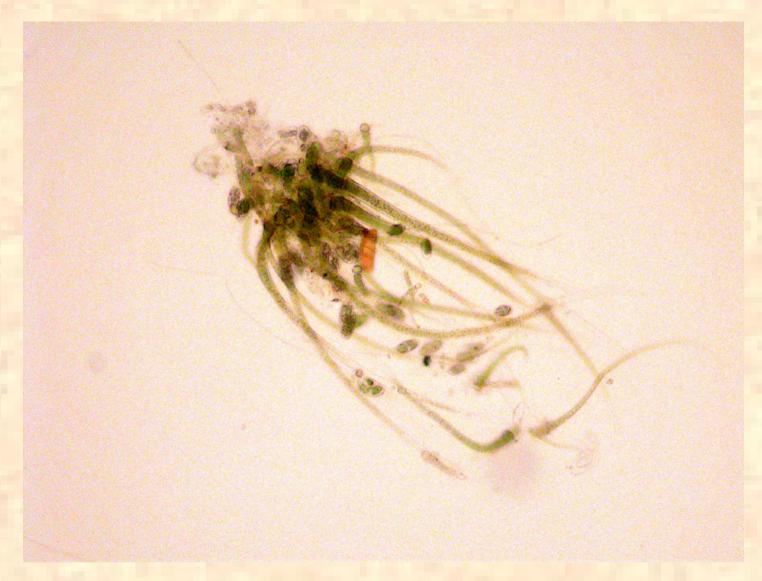



Dominierende Fadenalgen in durchschnittlichen Schwimmteichen

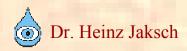
Phosphor-Gehalte und dominierende Fadenalgen in Schwimmteichen

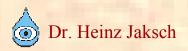


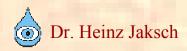

Blaualgenbelag



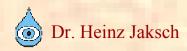
Blaualgenbelag

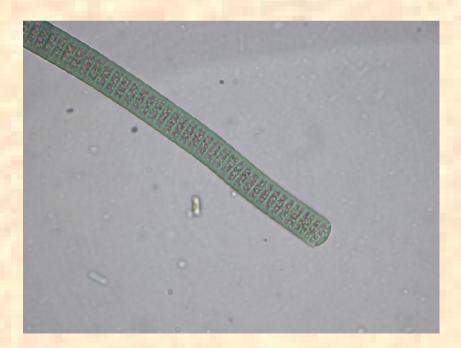


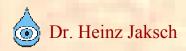

Haarzwiebel-Blaualgen - Calothrix


Haarzwiebel-Blaualgen - Calothrix

Blaualgenbelag

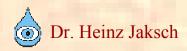


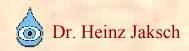

Schwingalge – Oszillatoria



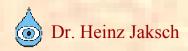
Schwingalge - Oszillatoria

- Geringer Lichtbedarf, hoher P-Bedarf
- Können Konkurrenten extrem rasch überwuchern (Einzelfäden können kriechen, Allelopathie)
- Bestimmung Oszillatoria:
 - Blaugrüne, schwärzliche Matten, leicht zerfallend
 - Modrig-fischiger Geruch

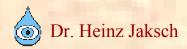


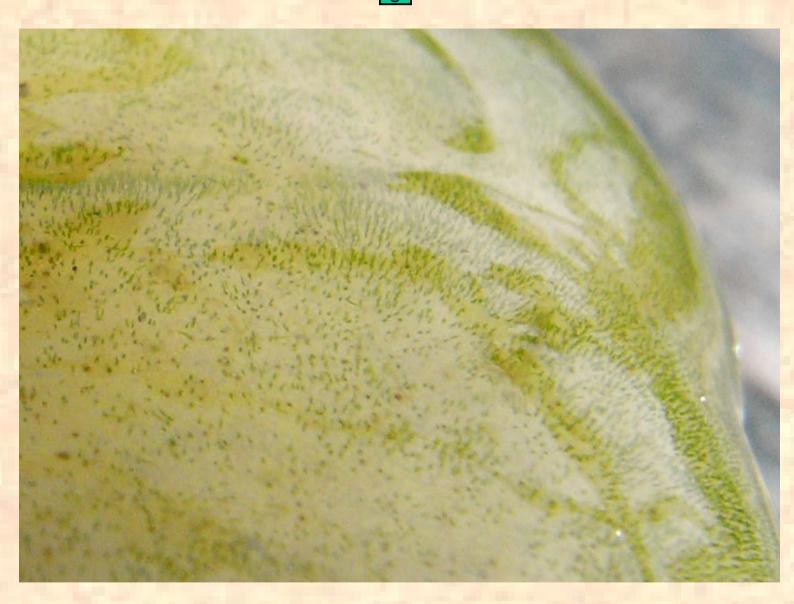

Schwingalge – Oszillatoria

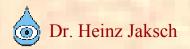
Schwingalge – Oszillatoria



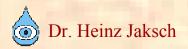
Schwingalge – Oszillatoria






Sternschneuzer - Nostoc

Sternschneuzer - Nostoc



Sternschneuzer - Nostoc

